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We study the impurity states in bilayer graphene in the unitary limit using Green’s function method. Unlike
in single layer graphene, the presence of impurities at two nonequivalent sites in bilayer graphene produces
different impurity states, which is understood as the change in the band structure due to interlayer hopping of
electrons. The impurity states can also be tuned by changing the band structure of bilayer grahene through
external electric-field bias.
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I. INTRODUCTION

In recent years, the fabrication of few layer graphene
systems1–3 has attracted a lot of attention to study the elec-
tronic properties of these systems. The electrons in single
layer graphene show some unconventional electronic proper-
ties such as the half-integer quantum Hall effect2 �QHE� and
Klein paradox.4 The electrons in bilayer systems also show
some interesting properties as seen in QHE.3 Many proper-
ties of the single and bilayer graphenes, such as the QHE, the
possibilities of ferromagnetic transition,5,6 and the charge
inhomogeneity,7,8 differ because of their different crystal
structures. In this paper we present a systematic study of
impurity effects in bilayer graphene and contrast it with that
in the single layer counterpart.

The fundamental difference between single and bilayer
graphenes originates from their crystal structure. Single layer
graphene is an atomically thin two-dimensional hexagonal
packing of sp2 bonded carbon atoms. It is the building block
of �multilayer� graphene. One unit cell of single layer
graphene has two nonequivalent lattice sites �A and B�. As a
result, the electron wave function is spinorlike, where the
sublattice index plays the role of pseudospin. The tight-
binding calculation9–11 shows that the electrons in single
layer graphene disperse linearly, i.e., Ek= �vFk, where
vF= 3ta

2 =5.8 eV Å is the Fermi velocity, t=3.0 eV is the
nearest-neighbor hopping energy in the plane, and a is the
lattice constant, and hence, are called the massless Dirac fer-
mions. The bilayer graphene, as shown schematically in Fig.
1, can be thought of as a stacking of two identical single
layer graphenes in the third dimension. In one of the
common ways of layer stacking, known as Bernal stacking,
only one of the nonequivalent lattice sites �site A� stays on
top of another; another site �B� lies in the middle of the
hexagon of the other layer.12 The electron can hop between
the layers along the bonding of these two A sites with a
hopping energy �t��, which is about ten times smaller than
the hopping energy along the plane. This interlayer hopping
hybridizes the pz orbital of the carbon atom at site A, result-
ing in different dispersion relations of the electrons,

�Ek= �
t�

2 �� t�
2

4 +vF
2k2�.12–14 Two of the branches of the elec-

tronic band touch each other at the Fermi energy, whereas
the other two branches become gapped with an energy gap

equal to t�. The dispersion relation of the electrons corre-
sponding to the gapless branches can be expressed in para-
bolic form at low momenta. The electron energy in this case
has a parabolic dispersion at low momenta. In addition to
this difference of the band structure between single and bi-
layer graphenes, the bilayer system gives the freedom of tai-
loring the band structure by applying an external electric-
field bias �V� on the two layers. The dispersion relation in the
presence of the external field bias becomes14,15

EK = ��V2

4
+

t�
2

2
+ vF

2k2 �� t�
4

4
+ �V2 + t�

2 �vF
2k2, �1�

which shows that the two valence �conduction� bands shift
below �above� the Fermi energy by V /2.

To understand the electronic property of these systems, it
is important to study the revealing impurity effects. The im-
purity states in single layer graphene have been studied by
Wehling et al.16 and by Bena.17 It has been shown that if an
impurity is introduced on a lattice site, a virtually bound
impurity resonance state can be induced, which can be seen
as an enhancement of the local density of states �LDOS� at
the neighboring site. This effect is symmetric with respect to
the sublattice that the impurity is on, i.e., an impurity at site
B shows exactly the same effect as it is at site A. In bilayer
graphene, due to the bonding between sites A of the two
layers, sites A and B in each layer are no longer equivalent.
The interlayer hopping distinctly differentiates the two sites.
So we expect to see different impurity states with respect to
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FIG. 1. �Color online� Lattice structure of bilayer graphene un-
der consideration for a tight-binding calculation. The green �dashed�
line forms the top layer and the red �dotted� line forms the bottom
layer.
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the location of the impurity. In addition, it is natural to ex-
pect that the external bias which changes the band structure
also modifies the properties of the impurity states. This mo-
tivates us to study the impurity states in bilayer graphene as
a function of both t� and V. The impurity effect in single
layer graphene is contained in our discussion as a special
case of bilayer graphene where t�=0.

The outline of the paper is as follows: In Sec. II, we
present a Green’s function method to study the impurity ef-
fects. For the clean system, the results from the Green’s func-
tion method is benchmarked with the exact diagonalization.
In Sec. III, we present a systematic set of results and discus-
sions. We summarize the important results in Sec. IV, and the
concluding remarks are given in Sec. V.

II. THEORETICAL METHOD

In this section, we describe the theoretical method used to
calculated the LDOS in the bilayer graphene using Green’s
function. We need to find the form of the Hamiltonian to
define the free particle Green’s function. The Green’s func-
tion in the presence of the impurity potential is obtained by
using Dyson’s equation. We derive a tight-binding Hamil-
tonian using the lattice structure of the bilayer graphene as
shown in Fig. 1. The basis vectors are chosen to be a1

= � 3a
2 , −�3a

2
� and a2= � 3a

2 ,
�3a
2

�. The corresponding basis vectors
of the reciprocal space are given by b1= � 2�

3a , −2�
�3a

� and b2

= � 2�
3a , 2�

�3a
�. Sites A1 and A2 are connected along the z direc-

tion; the electrons have t� hopping energy in this direction.
We have assumed that the layer which has lattice sites A1 and
B1 is biased with V /2, and the layer which has lattice sites A2
and B2 with −V /2 so that the potential difference between
the two layers is V. For the convenience of discussion, these
two layers are called the top and bottom layers, respectively.

The tight-binding equations for this lattice structure in the
clean case can be written as

Ĥk�
�A1

�B1

�A2

�B2

� = �n�
�A1

�B1

�A2

�B2

� . �2�

Here,

Ĥk =�
V/2 t̃ − t� 0

t̃* V/2 0 0

− t� 0 − V/2 t̃*

0 0 t̃ − V/2
� , �3�

with t̃=−t�2 exp� −ikxa
2

�cos� kya�3
2

�+exp�ikxa�� and t̃* is the
complex conjugate of t̃.

The Green’s function corresponding to this Hamiltonian
can be expressed as

Ĝ�0��k,�� = ��1̂ − Ĥk�−1, �4�

where 1̂ represents the unit matrix. As long as all introduced
impurities �up to four� are located within a single cell, we

can express the local Green’s function exactly through the
T-matrix method, which leads to

Ĝij��� = Ĝij
�0���� + Ĝi0

�0����T̂���G0j
0 ��� . �5�

Here, the T matrix T̂���= Û�1−G�0����Û�−1, the local

Green’s function Ĝij
�0����= 1

N�kĜ�0��k ,��exp�ik ·rij�, where

the summation is over the first Brillouin zone, and Û is the
matrix representation of the impurity potential. The local
density of states at different sites is given by NA1= −1

� G11��
+ i��, NB1= −1

� G22��+ i��, NA2= −1
� G33��+ i��, NB2

= −1
� G44��+ i��, where � is the lifetime broadening. For nu-

merical calculation, all relevant energies are measured in
terms of the intralayer hopping energy of the electron, t. For
simplicity, we use the impurity potential close to the unitary
limit, U=100. The number of 1024�1024 k points are used
in the Brillouin zone. The intrinsic lifetime broadening of
�=0.005 is taken. When we present results, unless otherwise
stated, �a�–�d� represent the LDOS at sites A1, B1, A2, and B2,
respectively. In each figure, the density of states �DOS� is
plotted �along the vertical axis� as a function of energy E
�along the horizontal axis�.

We can also calculate the DOS in the absence of impuri-
ties using eigenvalues and eigenvectors of the Hamiltonian
matrix �Eq. �3��. A little algebra yields the eigenvalues

�n = 	�V2

4
+

t�
2

2
+ t̃ t̃* 	� t�

4

4
+ �V2 + t�

2 �t̃ t̃*, �6�

where �n represents the four eigenvalues. Note that the lin-
earization of Eq. �6� near the corner of the Brillouin zone
reduces to Eq. �1�.

The corresponding eigenvectors are given by the general
equation

�
�A1,�n

�B1,�n

�A2,�n

�B2,�n

� =�
	t̃	2 − 
V

2
+ �n�2

	t̃	2
�n −
V

2
� + 
V

2
+ �n�
t�

2 +
V2

4
− �n

2�
V

2
+ �n

t̃

1

� ,

�7�

where substituting four different values of �n gives the four
sets of eigenvectors. We normalize thus obtained 4�4 ma-
trix of the eigenvectors and calculate the density of states on
four nonequivalent sites using the standard equation

N
��E� =
1

N�
�
k,�n

	�
�,�n
�k�	2� �

�E − �n�2 + �2
 , �8�

where 
=A and B, �=1 and 2, and �
�,�n
�k� is the normal-

ized eigenvector. We used this DOS to check the result ob-
tained by the Green’s function method in the absence of
impurity.
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III. RESULTS AND DISCUSSIONS

A. Clean limit

Before getting into the discussion of the impurity states,
we first discuss the effects of V and t� on the DOS in the
absence of impurity. For V=0 and t�=0, the DOS at every
site is the same and it vanishes linearly in E close to the
Fermi energy, as shown in Fig. 2�a�. For t�=0 but V�0, the
DOSs in the two layers are different. The overall variation of
the DOS is still preserved, but the DOS curve of the upper
�lower� layer shifts toward the positive �negative� energy re-
gion by V /2 �Fig. 2�b��. So, the minima in the DOS for the
upper �lower� layer lies at E= 	V	 /2. This results in a finite
density of states at the Fermi energy. The shift in the position
of the DOS minima will have a nontrivial influence on im-
purity states as discussed below.

The difference in the DOS of single and bilayer graphenes
can be studied by using a finite value of t�. In Figs. 2�c� and
2�d�, we show the DOS at four sites for various values of t�

but fixed V=0. The DOSs at A1 and A2 are equal and, simi-
larly, the DOSs at B1 and B2 are equal but those at sites A
and B are not equal in the energy range −t��E� t�. In this
energy range, the DOS at A sites is smaller than that at B
sites. In particular, at the Fermi energy, the DOS at B sites is
finite, but that at A sites is zero. These effects can be under-
stood in terms of the difference in the band structure caused
by a finite t�. The band structure corresponding to sites A1
and A2 describes the antibonding states characterized by
band gaps of �t�, which results in the decreased density of
states compared to that of the single layer graphene, where
corresponding bands are gapless. On the other hand, the band

structure corresponding to sites B1 and B2 is gapless at the
Fermi energy and has a flatter band compared to the single
layer case, resulting in a finite density of states at the Fermi
level. An interesting point is that the DOS at B sites is also
linear even though the dispersion relation of the electron
corresponding to B sites can be approximated by a parabolic
dispersion at low momenta.

Here, we also discuss the combined effect of bias and
interlayer hopping on the DOS. In Figs. 3�a�–3�d�, we have
shown the DOS at four sites for fixed t�=0.1 and different V.
In Figs. 3�e� and 3�f�, we have also shown the DOS at A1 and
B1 for fixed V=0.5 and different t�. Some additional features
are seen in these figures. The DOS at all sites gets modified
compared to the unbiased case �cf. Figs. 2�c� and 2�d��.
There is a shift of the DOS minimum to E= �V /2 compared
to the V=0 case. There is also a gap opening around the
Fermi energy, which increases with the increase in t�. These
unique features of band structure will lead to nontrivial im-
purity states.

B. Impurity states

We now discuss a single impurity in the absence of the
external bias. First, we put an impurity at A1 and study the
DOS for various values of t�. The result of the actual calcu-
lation is shown in Fig. 4. The impurity has the following
effects: The DOS at the impurity site, A1, decreases sharply.
The DOS at site B1 increases sharply, which is the signature
of a virtually bound impurity resonance state. The position of
the resonance peak shifts slightly below the Fermi energy
with the increase in t�. This shift of the resonance peak is
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FIG. 2. �Color online� The density of states as a function of energy is shown. �a� For t�=0, the DOS at all sites is the same and vanishes
linearly at the Fermi energy. �b� For t�=0 and V�0, the DOS curve for sites on the top �bottom� layer shifts above �below� the Fermi energy
by V /2, creating a finite DOS at the Fermi level. �c� For t��0, DOS at A sites of both layers is the same, and for −t��E� t�, it decreases
compared to the single layer case. �d� DOS at sites B of both layers is the same, and for −t��E� t�, it increases compared to the single
layer case.
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expected because the t� also affects the pole of the Green’s
function as determined by the band structure. The width of
the resonance peak decreases with t�. This is expected be-
cause the increase in t� depresses the band DOS on site A1,
which suppresses the scattering rate from the generated im-
purity state. It corresponds to an increase of lifetime, signi-
fying a sharp resonance.

The effect on the DOS at A2 due to the impurity at A1 is
very small. The overall behavior of the DOS curve does not
change, as shown in Fig. 4�c�. We see a finite DOS at A2 at
the Fermi energy, which is nothing but the finite size effect,
which is not seen in Fig. 2�c� because of the extended scale
used to show the DOS. When we zoom in and compare Figs.
2�c� and 4�c�, we see a small enhancement in the DOS at site
A2 in the presence of an impurity at A1 �except for t�=0�. We
see some additional features in the DOS at B2, namely, the
dip-hump structure in the DOS close to the Fermi energy. We
believe that the small change in the DOS at A2 and B2 is due
to the Friedel oscillation in the bottom layer created due to
the impurity at the top layer. The strength of the Friedel
oscillation in the bottom layer is very small because of the
geometry effect.

Now we turn to a discussion on the DOS when the impu-
rity is at site B1 �Fig. 5�. We find that the DOS at site B1 is
sharply reduced. At all other sites, the DOS increases com-
pared to the clean case, which is different from the result of
the single impurity at the A1 case. The DOS at A1 increases
sharply, which signifies the virtual bound state due to the
impurity resonance. We notice that the height of the reso-
nance peak at site A1 decreases with the increase in t�. Si-
multaneously, the resonance becomes broader. This effect is
just opposite to the effect seen in the case when the impurity
is at site A1. This effect can be understood in terms of the
band structure corresponding to site B. The increase in t�

enhances the band DOS on site B1, which increases the scat-
tering rate from the generated impurity state. It corresponds
to a decrease of lifetime, signifying a broader resonance.
There is very little change in the overall behavior of the DOS
at site A2 compared to the no impurity case �Fig. 2�c��. At
site B2, we see some additional features, namely, the dip-
hump structure. Compared to the similar effect seen at B2
due to the impurity at site A1, the structure of the DOS in the
present case is weaker. It is because the effect gets commu-
nicated to site B2 through A1 and A2, which will be weaker
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FIG. 3. �Color online� LDOS in the absence of impurity at fixed t�=0.1 and different V. The minimum of the DOS is at 	V	 /2. Small
enhancement of the DOS occurs close to the Fermi energy with the increase in V. We will show later that the position of this enhancement
depends on t�. There is a rearrangement of DOS between A and B sites. ��e� and �f�� LDOS at sites A1 and B1 �respectively� at fixed V
=0.5 and different t� is shown. We see a gap opening around the Fermi energy. The magnitude of the gap increases with the increase in t�.
LDOS at sites A2 and B2 can be obtained by mirror inversion to the curves in �e� and �f� about the axis of E=0, respectively.
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than the previous case where the effect was communicated
through only one bonding length.

Having discussed the effect in the single impurity case, it
is much easier to understand the double impurity case. When
there are two impurities at sites A1 and A2, the impurity

resonance occurs at sites B1 and B2. The DOS at B1 and B2
are identical. The height of the resonance peak increases with
the increase in t� and the resonance becomes sharper and
sharper. When there are two impurities at sites B1 and B2, the
impurity resonance occurs at sites A1 and A2. The DOSs at
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FIG. 4. �Color online� For a single impurity at site A1, DOS as a function of energy is shown. DOS at the impurity site, A1, is very small.
DOS at the neighboring site in the same layer, B1, is very high, which is the signature of the impurity resonance. The resonance is close to
the Fermi energy. Qualitatively, the DOS at site A2 is similar to that in the nonimpurity case �Fig. 2�c��, but it changes at site B2. There is
a small oscillation in the DOS close to the Fermi energy at site B2.
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FIG. 5. �Color online� For a single impurity at site B1, DOS as a function of energy is shown. DOS at the impurity site, B1, is very small.
DOS at the neighboring site in the same layer, A1, is very high, which is the signature of the impurity resonance. The resonance is close to
the Fermi energy. Qualitatively, the DOS at site A2 is similar to that in the nonimpurity case �Fig. 2�c��, but it changes at site B2. There is
a small oscillation in the DOS close to the Fermi energy at site B2.
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A1 and A2 are identical. The height of the resonance peak
decreases with the increase in t� and the peak width be-
comes broader.

Now we proceed to discuss the effect of bias on the im-
purity states in bilayer graphene. When there is a single im-
purity at site A1, we see impurity resonance at site B1 �Fig.
6�b��. The position of the resonance moves above the Fermi
energy by V /2. The height of the resonance decreases
slightly with the increase in V. We also see a small satellite
peak near the Fermi energy. At site A2, we also see an impu-
rity assisted enhancement in the DOS on the gap edge �cf.
Fig. 3�c��. At site B2, the DOS does not show much qualita-
tive change.

To better understand the results, especially the satellite
peak of Fig. 6�b� and the position of the enhancement peak
of Figs. 6�c� and 6�d�, we study the change in LDOS due to
change in t� for fixed V=0.5. The result is shown in Fig. 7.
We find some additional information from this calculation.
The strength of the satellite peak, seen in the DOS at B1,
grows with t�. We find that the position of the peak is deter-
mined by both V and t�. The calculation shows that the

position of the satellite peak is at Eg= V
2� t�

2

t�
2 +V2�2

. This is
equal to the energy gap of the second dip in the dispersion
relation of the bilayer graphene in the presence of the exter-
nal bias. The edge of the band gap seen in Fig. 3 is also at
E=Eg. A similar behavior is seen at site A2. The enhance-
ment of the DOS seen in Fig. 6�c� for V=0.5 increases with
t�. The position of the peak also moves away from the Fermi
energy by Eg. At site B2, additional features are seen. The
height of the small satellite peak increases with t�. The po-
sition of the peak also shifts symmetrically above and below
the Fermi level by Eg. With the increase in t�, a clear sign of
the gap opening is seen around the Fermi energy.

When there is a single impurity at site B1 �see Fig. 8�, we
see different features than when there is an impurity at A1. At
V=0, there is a single impurity resonance close to the Fermi
energy. When there is an external bias, the resonance peak at
site A1 splits into two peaks. One of the peak lies at E
=V /2 above the Fermi energy; the other remains close to the
Fermi energy. With the increase in V, the intensity of the
peak at V /2 increases and that close to the Fermi energy
decreases. At sites A2 and B2, we see an impurity assisted
enhanced DOS close to the Fermi energy.

To better understand the result presented in Fig. 8, we
perform another calculation for LDOS at fixed V=0.5 and
different t�. The result is shown in Fig. 9. In Fig. 9�a�, we
can see that the weight of LDOS at E=V /2 decreases with
t�. This loss of weight is transferred close to the Fermi en-
ergy. This phenomenon can be understood in terms of the
change in LDOS �at fixed V=0.5 in the absence of the im-
purity� due to the change in t�, �see Figs. 3�e� and 3�f��,
where we see that a finite t� opens up a gap around the
Fermi energy and the gap becomes more and more well de-
fined for increased t�. This gap leads to a different resonance
state around the Fermi energy in the presence of the impu-
rity. The shift of the weight of the LDOS close to the Fermi
energy at sites A2 and B2 can also be understood using the
same logic. We can also see in Fig. 3�f� that the LDOS at site
B1 at E=V /2 increases with the increase in t�, which ex-
plains the broadening effect seen in Fig. 9�a� near E=V /2.

When we have two impurities at A1 and A2, we see im-
purity resonances at B1 and B2. The position of the impurity
resonance is again determined by V /2. Interestingly, the im-
purity resonance at site B1 lies above the Fermi energy,
whereas that at site B2 is below the Fermi energy. The DOS
at B1 can be obtained by mirror reflection of the DOS at B2
about the axis of E=0.
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FIG. 6. �Color online� LDOS for a single impurity at site A1 with t�=0.1 fixed for different values of V. There is impurity resonance at
site B1. The impurity resonance is at E=V /2. We also see an enhancement of the DOS at site A2 assisted by the presence of an impurity at
A1. We also see an insignificant change in DOS at site B2.
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When we put two impurities at B1 and B2, impurity reso-
nance arises at A1 and A2. The position of the impurity reso-
nance is again determined by V /2. The impurity resonance at
site A1 lies above the Fermi energy, whereas that at site A2 is
below the Fermi energy. The DOS at A1 can be obtained by
mirror reflection of the DOS at A2 about the axis of E=0.

IV. SUMMARY

Bilayer graphene has been created experimentally using a
micromechanical cleavage method. It is always hard to ob-

tain pristine bilayer systems experimentally. Graphene can
have disorders such as cracks, unsaturated bonding, missing
atoms �vacancies�, foreign atoms �neutral or charged�, corru-
gation of the surface, dislocations, and boundaries or edges.
Different kinds of disorder influence the electronic properties
of the system differently. The presence of disorder changes
the local density of states of the clean system. Mathemati-
cally, the static disorder is modeled by adding an extra po-
tential term in the Hamiltonian. If the disorder is local, it is
modeled by a short-ranged potential. We consider a local
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FIG. 7. �Color online� LDOS for a single impurity at site A1, for V=0.5 fixed, and with the variation in t�.
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FIG. 8. �Color online� In addition to a resonance which follows V /2, we see some interesting features at sites A2 and B2.
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impurity produced by a missing atom �vacancy�, which can
be treated mathematically by introducing a contact potential
in the unitary limit. For experimental purpose, a vacancy can
be created by irradiating protons on the system.

We studied the impurity states in bilayer graphene for
impurity potential in the unitary limit. We analyze the change
in the local density of states at four lattice sites
�A1 ,A2 ,B1 ,B2�, which form the smallest unit cell of the bi-
layer graphene, due to the presence of impurity on one �A1 or
B1� lattice site or two �A1 and A2 or B1 and B2� lattice sites.
Here, A1 ,B1 and A2 ,B2 are the nonequivalent lattice sites of
the top and bottom layers, respectively. Normally the impu-
rity state is identified as an enhancement of the LDOS in the
neighboring lattice sites of the impurity site. In bilayer
graphene, two neighboring sites �A1 and B1� are not equiva-
lent because only one of the sites �A1� is connected to the
lattice site �A2� of the other layer. Therefore, electrons can
hop between the two layers only along A1A2 �interlayer hop-
ping�. It leads to different impurity states when impurity is
placed either on A1 or on B1 sites. This observation is differ-
ent than in the single layer graphene, where the impurity
state is insensitive to the lattice site on which the impurity is
placed. We study the effect of the interlayer hopping on the
impurity states in bilayer graphene. Furthermore, contrary to
the single layer graphene, the band structure of the bilayer
graphene can be changed by applying an external bias. The
most significant change is on the band structure, namely, the
opening of a band gap. It is probably hard to make individual
contacts to the two layers of the bilayer graphene to bias
them with opposite polarities because the separation of the
two layers is very small �3.35 Å�. However, an experiment
has already been done where the theoretically predicted band
gap opening due to the bias is tested successfully.18 Thus, we
study the effect of the external bias on the impurity states.
Since, we have two tuning parameters, the external bias and

the interlayer hopping, we also study their combined effects
on the impurity states.

In the clean limit, the LDOS in the single layer graphene
varies linearly with energy and vanishes at the Fermi energy.
In the absence of an external bias, the LDOS at all sites of
the bilayer graphene is also minimum at the Fermi energy
although its magnitude is unequal for lattice sites A and B
�zero at sites A1 ,A2 and finite at B1 ,B2�. When the impurity
is at site A1, we find an impurity resonance at site B1 and vice
versa. The resonance state is close to the Fermi energy be-
cause the density of state has its minimum at this energy. The
width of the resonance at B1 �A1� when the impurity is at A1
�B1� decreases �increases� with the increase in the interlayer
hopping. Therefore, the impurity at A1 �B1� produces rela-
tively long �short� lived bound states at B1 �A1�. It is under-
stood as the effect of the enhanced �suppressed� density of
states at the B1 �A1� band around the Fermi energy due to the
interlayer hopping. The change in the local density of states
at the lattice sites of the other layer �A2 and B2� is small.

When the external bias is finite, we consider that the top
layer is biased positively �V /2� and the bottom layer is bi-
ased negatively �−V /2� so that the net potential difference
between the two layers is V. In the limit when the interlayer
hopping is zero, the minimum of the density of state at A1
and B1 �A2 and B2� shifts above �below� the Fermi energy by
V /2 �−V /2�. It leads to the shift in the position of the impu-
rity states above �below� the Fermi energy by V /2 �−V /2�.
Hence, we show that the impurity states in bilayer graphene
can be tuned by using an external bias.

When both the interlayer hopping and external bias are
finite, a gap opens around the Fermi energy at both A and B

lattice sites. The gap is equal to Eg= V
2� t�

2

t�
2 +V2�2

. The gap in-
creases with the interlayer hopping. For lattice site A1, the
minimum of the LDOS due to the external bias �which is
above the Fermi energy at E=V /2� remains as it is. How-
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FIG. 9. �Color online� LDOS for a single impurity at site B1 for V=0.5 and with the variation in t�.
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ever, at site B1, the LDOS at E=V /2 increases. We observe a
different impurity state due to the presence of the impurity at
A1 or B1. When the impurity is at A1, two impurity resonance
peaks show up in the LDOS at B1. One is at E=V /2 and
another at E=Eg. The weight of the peak at E=Eg signifi-
cantly increases with the interlayer hopping. When the im-
purity is at B1, we still get two resonance peaks at A1. The
difference is that one resonance is at E=V /2 and the other is
close to the Fermi energy. Furthermore, these two resonances
compete when the interlayer hopping is increased. The reso-
nance at E=V /2 loses its weight and becomes broader �due
to the enhanced LDOS at B1 at E=V /2�, whereas the reso-
nance close to the Fermi energy gains weight when the in-
terlayer hopping is increased.

We show that very nontrivial and interesting impurity
states can be created in bilayer graphene. We can tune these
states by putting impurities in different lattice sites and by
changing the interlayer hopping and external bias. We pro-
pose that scanning tunneling microscopy �STM� can be used
to test these impurity states. STM experiments have already
been successfully used in graphite,19 carbon nanotube,20–22

and in single and bilayer graphenes23,24 to characterize the
disorder and to determine the local density of states as a
function of energy. The basic principle is that by using STM
we can determine the tunneling current as a function of the
bias at the lattice sites of interest. Using differential tunnel-
ing conductance, we can map out the local density of states.

Our results are correct for an idealized model of the bi-
layer graphene, i.e., without taking into account the effects of
the electron-electron �e-e� and electron-phonon �e-ph� inter-
actions. The inclusion of the e-e and e-ph interactions renor-
malizes the band structure of the bilayer graphene. Math-
ematically, it amounts to replacing the bare Green’s function,

Ĝ�0��k ,��, by a dressed Green’s function, G�̂ �0��k ,��. Each

matrix element of G�̂ �0��k ,�� �see Eq. �4�� will then have an
additional self-energy term as shown in Ref. 25. In reality,
we know that the interaction does not significantly change
the band structure of the bilayer graphene because the band
structure predicted theoretically without including the e-e
and e-ph interactions does not differ much from the band
structure obtained experimentally in the angle resolved pho-
toemission spectroscopy experiment �there is only a small
extra kinklike feature�.26 In general, the inclusion of the in-
teractions introduces some features in the LDOS, but the low
energy enhancement of the LDOS due to the impurity in the
unitary limit always exists.25 Hence, we believe that the main
features of the impurity resonance states discussed here do
not change even if we consider a more practical model of the
bilayer graphene.

The results are valid for a bilayer system in which two
layers are stacked in a special fashion, namely, Bernal stack-

ing. Although Bernal stacking is one of the most common
ways of stacking multiple layers of graphene, the top layer of
the multilayer graphene can be twisted in a two-dimensional
plane. It is seen experimentally that the epitaxially grown
multilayer graphene has orientation disorder.27 The electronic
properties of a bilayer graphene with a small rotation of the
top layer with respect to the bottom layer are analytically
studied.28 It has been shown that the dispersion relation of
the electron in such a bilayer is linear and the band structure
is semimetallic. In the presence of the external bias, the band
gap cannot be opened. In this case, we would need to do
another calculation to precisely determine how the details of
the results discussed in this paper change. However, we can
make some intuitive predictions. Since the dispersion rela-
tion of the electrons looks more like that of the single layer
graphene, the impurity states will also be quantitatively simi-
lar to that of the single layer graphene.

V. CONCLUDING REMARKS

Before concluding, we would like to make two comments.
To our knowledge, two studies have been done which re-
sembles our work. Wang et al.29 have studied the effects of
voids in the absence of external bias. In particular, they in-
vestigated the quantum interference pattern in a specific en-
ergy and no impurity induced resonance states were dis-
cussed. Similarly, the disorder problem in biased bilayer
graphene was studied by Nilsson and Castro Neto.15 In our
work, we have addressed the issue about the sensitivity of
the impurity induced resonance states to the underlying elec-
tronic band structure in a bilayer graphene through the appli-
cation of pressure or/and electric bias, which were not dis-
cussed in these literatures.

In conclusion, we study the possibility of tuning the im-
purity states in a bilayer graphene. We systematically study
the signature of the impurity resonance states by looking at
the local density of states at four inequivalent sites of the
bilayer graphene. This work is the most detailed study of the
impurity states in bilayer graphene. We have shown that in
bilayer graphene, the impurity states can be tuned using an
external bias and changing the interlayer hopping energy.
Our predictions about the evolution of the impurity states in
bilayer graphene can be tested by scanning tunneling micros-
copy.
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